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Abstract - A second-order switching surface in the boundary 
control of buck converters is studied in this paper.  The 
formulated switching surface can make the overall converter 
exhibit better steady-state and transient behaviors than the 
one with first-order switching surface.  Most importantly, it is 
applicable for converters operating in both continuous and 
discontinuous conduction modes.  The switching surface is 
derived from estimating the state trajectory movement after a 
switching action, resulting in a high state trajectory velocity 
along the switching surface.  This phenomenon accelerates the 
trajectory moving towards the target operating point.  The 
proposed control scheme has been successfully applied to a 
120W buck converter.  Detailed large-signal characteristics 
and comparisons with the first-order switching surface will be 
discussed. 
Index Terms - Boundary control, dc-dc conversion, large-signal 
stability 

I. INTRODUCTION 
 Switching converters are an important class of systems 
that operate by variable structure control.  Boundary control 
is a geometric based control method suitable for those 
switching converters having time-varying circuit topology.  
Based on the large-signal trajectories of the converter on 
the state plane, a switching surface is defined to dictate the 
switching actions.  An ideal switching surface can achieve 
global stability, good large-signal operation, and fast 
dynamics [1].  Detailed investigations into the modeling, 
design, and analysis of the boundary control with first-order 
switching surface are studied in [1]-[3]. 
 Among various boundary control methods with first-
order switching surfaces, sliding-mode control and 
hysteresis control are widely used in power converters [4]-
[7].  Although all those methods generally provide good 
large-signal performance and stability, the transient 
dynamics is not optimized.  Much research work extend 
those concepts, such as the adaptive-hysteresis control in [8, 
9], to enhance the dynamics.  However, many of them are 
only applicable for dc/dc converters operating in 
continuous conduction mode.  When a converter is operated 
in the discontinuous conduction mode, an additional 
boundary due to the zero inductor current is created 
inherently.  An unstable combination may be emerged [2].  
Moreover, with the presence of hysteresis band, the output 
will even have steady-state error. 
 A second-order switching surface in the boundary 
control of buck converters is presented in this paper.  The 
proposed switching surface enhances the tangential velocity 
of the trajectories along the switching surface, so that the 
converter exhibit better transient behaviors than the one 
with the first-order switching surface.  Instead of guiding 
the state trajectory movement as in the first-order switching 
surface, the proposed surface is derived from the natural 

movement of the state trajectory after a switching action.  
The scheme is applicable for converters operating in both 
continuous and discontinuous conduction modes.  The 
proposed control scheme has been successfully applied to a 
120W buck converter. 

 
Fig. 1 Circuit schematics of buck converter. 

 
Fig. 2 State trajectory families of buck converter with σ1 and σi. [Solid line: 

on-trajectories, Dotted line: off-trajectories] 

II. FIRST- AND SECOND-ORDER SWITCHING 
SURFACES 

 The buck converter shown in Fig. 1 can be expressed 
by the state-space equation of 
 22211100 )()( quBxAquBxAuBxAx +++++=&  (1) 
where ][ CL vix = , iA  and iB  are constant matrix and iq  
represents the state of the switch iS .  iS  is on if iq  = 1, 
and is off if iq  = 0.  Matrices A0, B0, A1, B1, A2, and B2 are 
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 A family of the on- and off-state trajectories, as well as 
the load line, is shown in Fig. 2.  They are obtained by 
solving (1) with different initial conditions.  The 
component values used in the analysis are tabulated in 
Table I.  The on-state trajectory is obtained by setting 

},{ 21 qq  = {1, 0}, while the off-state trajectory is obtained 
by setting },{ 21 qq  = {0, 1}.  As discussed in [1], the 
tangential component of the state-trajectory velocity on the 
switching surface determines the rate at which successor 



points approach or recede from the target operating point.  
An ideal switching surface iσ  that gives fast dynamics 
should be on the only trajectory passing through the target 
operating point.  Once the converter state reaches the 
surface, it will theoretically attract to the target operating 
point in one successive switching cycle.  As shown in Fig. 
2, the surface of iσ  above the load line should be along the 
only off-state trajectory that passes the target operating 
point and the surface of iσ  below the load line should be 
along the only on-state trajectory that passes the target 
operating point.  The converter will follow the off-state 
trajectory, when its state is at the right hand side of iσ .  
The converter will follow the on-state trajectory, when its 
state is at the left hand side of iσ . 
 A typical first-order switching surface 1σ  is shown in 
Fig. 2.  It can be written in the following form with one 
reference setting 
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where Ci  and Cv  are the capacitor current and voltage, 
respectively, Li  is the inductor current, 1c  is the gain, R is 
the load resistance, and refv  is the desired output voltage. 

 Thus, the tangential state-trajectory velocity on 1σ  is 
non-optimal that the transient dynamics may take several 
switching cycles.  A second-order surface 2σ , which is 
near to the ideal surface around the operating point, is 
derived in the following.  The concept is based on 
estimating the state trajectory after a hypothesized 
switching action.  If the output ripple voltage is much 
smaller than the average output voltage at the steady state, 
the output current oi  is relatively constant.  Since 

oCL iii += , the change of Li , Li∆ , equals the change of Ci , 

Ci∆ .  Fig. 3 shows the typical waveforms of Cv  and Ci .  

Cv  varies between a maximum value of max,Cv  and a 
minimum value of min,Cv .  The state of S is determined by 
predicting the area under Ci  with a hypothesized switching 
action till 0=Ci  and comparing the area with a fixed ratio 
of the output error at that instant.  Criteria for switching 1S  
are given as below. 

 
Fig. 3 Typical waveforms of vC and iL of buck converter. 

1) Criteria for switching off 1S  

 As depicted in Fig. 3, 1S  is originally in the on state 
and is switched off at the hypothesized time instant 1t .  The 

objective is to determine 1t , so that Cv  is equal to max,Cv  at 

2t  (at which 0=Ci ).  The shaded area A1 under Ci  is 
integrated from 1t  to 2t .  Thus, 
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 A1 is approximated by a triangle.  It can be shown that 
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 In order to ensure that Cv  will not go above max,Cv , 1S  
should be switched off when 
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2) Criteria for switching on 1S  

 As depicted in Fig. 3, 1S  is originally off and is 
switched on at the hypothesized time instant 3t .  The 
objective is to determine 3t , so that Cv  is equal to min,Cv  at 

4t  (at which 0=Ci ).  The shaded area A2 under Ci  is 
integrated from 3t  to 4t .  Thus, 
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 Again, if A2 is approximated by a triangle, it can be 
shown that 
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 In order to ensure that Cv  will not go below min,Cv , 1S  
should be switched on when 
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and  0)( 3 <tiC  (10) 
 For simplicity, 1k  and 2k  are obtained by using the 
nominal values of inv  and Cv .  Based on (5), (6), (9), (10), 
and refCC vvv == max,min, , the following 2σ  can be 
concluded, 
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 The equation can further be written into a single 
expression of 
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 Compared (12) with 1σ  in (2), 2σ  consists of a 
second-order term.  2σ  is close to iσ  near the operating 
point.  However, discrepancies occur, when the state is far 
from the operating point because of the approximations in 



(4) and (8).  Implementation of the controller is shown in 
Fig. 4. 

 
Fig. 4 Implementation of the controller. 

III. LARGE-SIGNAL CHARACTERISTICS 
 Points along σ  = 0 can be classified into refractive, 
reflective, and rejective modes.  The dynamics of the 
system will exhibit differently in these regions [1].  For 2σ , 
the transition boundary is obtained by differentiating (12) 
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 Detailed derivation of (13) can be found in the 
Appendix. 
The expression at the left-hand-side can be derived by 
using the state equations in (1).  Based on (13), the 
transition boundary with 1S  on is 
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and the transition boundary with 1S  off is 
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 Detailed proofs of (14) and (15) are given in the 
Appendix.  
 Fig. 5 combines the transition boundaries of (14) and 
(15) together.  Ideal 2σ  is close to iσ  and should be along 
the boundary between the reflective and refractive regions.  
However, k1 and k2 in (5) and (9), respectively, are taken to 
be constant values.  These make the converter state 
possibly go through different operating regions before 
settling at the operating point.  This phenomenon can be 
observed by considering the number of intersection points 
between 2σ  in (11) and the transition boundaries in (14) 
and (15). 

 
Fig. 5 Transition boundaries. 

A. On-state trajectory 
 The intersection points of the on-state trajectory and 
the transition boundaries are determined by solving (11) 
and (14).  Three possible solutions of ],[ ,, onConL vi  are 
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 Derivations of (19)-(22) can be found in the Appendix. 
By combining (19)-(22), the value of k1 that make the 
converter state go through the possible operating modes are 
tabulated in Table II. 

 B. Off-state trajectory 
 The intersection points of the on-state trajectory and 
the transition boundaries are determined by solving (11) 
and (15).  Three possible solutions of ],[ ,, offCoffL vi  are 
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 Derivations of (26)-(29) can be found in the Appendix. 
 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 6 Possible cases in the intersections between the switching surface 
and transition boundaries. [vin=1, L=1, C=1, R=1.2, vref=0.5].  (a) Case I: 

Refractive region only with {k1,k2}={0.326, 0.326}. (b) Case II: Reflective 
Region only with {k1,k2}={1.5, 1.5}. (c) Case III: Along Two Regions 
with {k1,k2}={0.731, 0.731}. (d) Case IV: Along Three Regions with 

{k1,k2}={0.686, 0.686}. 

 By combining (26)-(29), the value of k2 that make the 
converter state go through the possible operating modes are 
tabulated in Table II. 
 Fig. 6 depicts the situation of four possible cases, as 
described in Table II.  Basically, when the state of the 
converter will move along the switching surface in the 
reflective region, which is similar to the sliding-mode 
control.  Once the state enters into the boundary between 
the reflective and refractive regions, the system will go to 
the target operating point in the next switching action. 

IV. EXPERIMENTAL VERIFICATIONS 
 A buck converter with the component values tabulated 
in Table I is studied.  Fig. 7 shows the start-up trajectory, 
together with 1σ  and 2σ .  1σ  is formulated by having the 
same startup transients with 2σ  (i.e., 1σ  and 2σ  intercept 
at the points ‘A’ and ‘B’ in Fig. 7).  The values of c1 in (2), 
and k1 in (11) can be shown to be equal to 
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where ACv ,  and ALi ,  are the values of Cv  and Li  at point 
‘A’, respectively. 
 Detailed proof of (30) and (31) can be found in the 
Appendix. 
 k2 in (11) is obtained by considering an arbitrary point 
(point ‘C’ in Fig. 7) on the state plane that 
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where CCv ,  and CLi ,  are the values of Cv  and Li  at point 
‘C’, respectively. 

 
Fig. 7 Start-up transient response and the first and second-order switching 

surface. [Dotted line: start-up trajectory of buck converter] 
  
 Detailed proof of (32) can be found in the Appendix.  
The values of k1 and k2 that are chosen with this method 
gives a near optimum switching surface close to σi. 
The hysteresis band in 1σ  is adjusted to give the same 
output ripple voltage at the rated power as with 2σ .  Fig. 8 
shows a comparison of the simulated transient responses 
when R is changed from 2.4Ω (60W) to 1.2Ω (120W), and 



vice versa, with 1σ  and 2σ , respectively.  The converter 
with 2σ  achieves faster transient response than that with 

1σ .  Fig. 9 shows the transient responses when R is 
changed from 2.4Ω (60W) to 24Ω (6W), in which the 
converter is operated in discontinuous conduction mode 
with R = 24Ω.  Results show that steady state error exists 
with 1σ  and is zero with 2σ .  The additional boundary due 
to the zero inductor current causes a shift of the effective 
output voltage reference.  Figs. 10 and 11 show the 
experimental results corresponding to the above testing 
conditions and are in close agreement with the theoretical 
predictions.  It can be observed that the converter can go to 
the steady state in two switching actions.  

 

 
Fig. 8 Transient response of R from 2.4Ω to 1.2Ω and vice versus. [ Solid 

line: σ2, Dotted line: σ1 ] 

 
Fig. 9 Transient response of R from 2.4Ω to 24Ω. [ Solid line: σ2, Dotted 

line: σ1 ] 
 

 
Fig. 10 Transient response of buck converter using second-order switching 
surface control. Load change from 5A(2.4Ω) to 10A(1.2Ω) and vice versus. 

[Ch1: vc (200mV/div), Ch2: vg(10V/div), Ch3: iL(10A/div), Ch4: 
io(10A/div)] (Timebase: 100µs/div) 

 

 
Fig. 11 Transient response of buck converter using second-order switching 

surface control. Load change from 5A(2.4Ω) to 0.5A(24Ω). [Ch1: vc 
(200mV/div), Ch2: vg(10V/div), Ch3: iL(5A/div), Ch4: io(5A/div)] 

(Timebase: 100µs/div) 

V. CONCLUSION 
 A boundary control using the second order switching 
surfaces in buck converter has been proposed.  Large-signal 
stability and the transient response are investigated. Results 
show that second-order switching surface can achieve near-
optimum large-signal responses and is also applicable for 
discontinuous conduction mode. 

 
Table I Component values of the buck converter 
Parameter Value 

vin 24V 
vref 12V 
L 100µH 
C 400µF 
R 1.2 Ω 
c1 0.2702 

{k1 , k2} {0.0104, 0.0104} 
 

Table II: Number of intersection points between switching surface and transition boundary 
  1k  and off-state transition boundary 2k  and on-state transition boundary 
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APPENDIX 
1. Proof of (13) 
 By differentiating both sides of (12), 
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 By equating 02 =σ  [Eq. (12)], 
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2. Proof of (14) 
 When q1 = 1 and q2 = 0, Eq. (1) can be written as 
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 Compared (A.7) with (13), the transition boundary 
with S1 on is 

refC

C
L

C
L

Cin

vv
R
vi

R
R
vi

vv
L
C

−

−
+=



















−

−
2
11               (A.8) 

 It can be rewritten as 
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3. Proof of (15) 
 When q1 = 0 and q2 = 1, Eq. (1) can be written as 
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 Based on (A.10) and (A.11) 
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 Compared (A.13) with (13), the transition boundary 
with S1 off is 
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 It can be rewritten as 
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4. Proof of (19)-(22) 
 The solutions are real if 
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 They must also satisfy the conditions of 
 0, ≥onCv  (A.17) 
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 Thus, by considering (16)-(18), and (A.17), 
 040α 111 ≥∆+Φ⇒≥  (A.19) 
and 
 040β 111 ≥∆−Φ⇒≥  (A.20) 
 Based on (A.19), it can be shown that 
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will give real solutions. 
 Based on (A.20), it can be shown 
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will have a real solution.  There is no real solution for 
02 ≥−CRL . 

 By substituting the solution set of (17) into (A.18), it 
can be shown that 

 
refCv

Lk ⋅<
2
1

1  (A.24) 

will have a real solution. 
 Similarly, by substituting the solution set of (18) into 
(A.18), 
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will have a real solution. 
 Thus, based on (A.16), (A.21), (A.22) and (A.24), (19) 
and (20) can be obtained.  Based on (A.16), (A.23) and 
(A.25), (21) and (22) can be obtained. 
5. Proof of (26)-(29) 
 The solutions are real if 
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 Thus, based on (23)-(25), and (A.27), 
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and 
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will give real solutions. 
 Based on (A.30), it can be shown that 
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will have a real solution.  There is no real solution for 
02 ≥−CRL . 

 By substituting the solution set of (24) into (A.28), it 
can be shown that 
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will give a real solution. 
 By substituting the solution set of (25) into (A.28), it 
can be shown that 
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will give a real solution. 
 Thus, based on (A.26), (A.31), (A.32) and (A.34), (26) 
and (27) can be obtained.  Based on (A.26), (A.33) and 
(A.35), (28) and (29) can be obtained.  The above 
calculation for k2 is valid for 02

, >offLi  and 03
, >offLi .  

6. Proof of (30)-(31) 
 The start-up on-state trajectory (i.e., ‘X1’ to ‘A’ in Fig. 
7) can be written as 
 uBBxAAx )()( 1010 +++=& ,  

1X0 xx =  (A.36) 
 The off-state trajectory (i.e., ‘A’ to ‘B’ in Fig. 7) can 
be replaced with the equivalent time reversed system given 
by 
 uBBxAAx )()( 2020 +−+−=& ,  B0 xx =  (A.37) 

where multiplying the system’s A and B matrices by -1 
reverses the state velocity vector and therefore gives the 
output )( tx − . 
 The intersection point ‘A’ of vector ][ ,,A ACAL vix =  
can be obtained by solving (A.36) and (A.37) numerically.  
By substituting ACv ,  and ALi ,  into (2), it can be shown that 
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 By substituting ACv ,  and ALi ,  into (12), it can be 
shown that 
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7. Proof of (32) 
 The off-state trajectory (i.e., ‘X2’ to ‘C’ in Fig. 7) can 
be written as 
 uBBxAAx )()( 2020 +++=& ,  

2X0 xx =  (A.40) 
 The on-state trajectory (i.e., from point ‘C’ to point ‘B’ 
in Fig. 7) can be replaced with the equivalent time reversed 
system given by 
 uBBxAAx )()( 1010 +−+−=& ,  B0 xx =  (A.41) 
 The intersection point ‘C’  of vector ][ ,,C CCCL vix =  
can be obtained by solving (A.40) and (A.41) numerically. 
By substituting C,Cv  and CLi ,  into (12), it can be shown that 
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